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a b s t r a c t

Crop injury caused by off-target drift of herbicide can seriously reduce growth and yield and is of great
concern to farmers and aerial applicators. Farmers can benefit from identifying an indirect method for
assessing the level of crop injury. This study evaluates the combined use of statistical methods and veg-
etation indices (VIs) derived from multispectral images to assess the level of crop injury. An experiment
was conducted in 2009 to determine glyphosate injury differences among the cotton, corn, and soybean
crops. The crops were planted in eight rows spaced 102 cm apart and 80 m long with four replications.
Seven VIs were calculated from multispectral images collected at 7 and 21 days after the glyphosate
application (DAA). At each image collection date, visual injury estimates were assessed and data were col-
lected for plant height, chlorophyll content, and shoot dry weight. From the seven VIs evaluated as sur-
rogate for glyphosate injury identification using a canonical correlation analysis (CCA), the Chlorophyll
Vegetation Index (CVI) showed the highest correlation with field-measured plant injury data. CVI image
values were subtracted from the CVI average values of the non-injured area to generate CVI residual
images (CVIres). Frequency distribution histograms of CVIres image values were calculated to assess the
level of injury between crops. These data suggested that injury increased from 7DAA to 21DAA with corn
exhibiting higher severity of injury than cotton or soybean, while only moderate injury was observed for
cotton. The techniques evaluated in this study are promising for estimating the level of glyphosate her-
bicide drift, which can be used to make appropriate management decisions considering crop proximity.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Properly managing aerial herbicide applications is key to mini-
mizing off-target drift that can cause crop injury. The increased use
of glyphosate, a non-selective herbicide, as a burndown herbicide
for no-till soybean and post applications in glyphosate-resistant
transgenic crops elevates the risk for injury. Frequent claims re-
ceived by insurance companies are related to herbicide-induced in-
jury; however, farmers face difficulty assessing the percentage of
acres impacted by drift and the degree of injury. Pringnitz (1999)
found that between 1998 and 1999 in Iowa, insurance complaints
related with herbicide off-target drift increased by 280%. In Missis-
sippi, 145 cases of drift were reported in 2000 and 2001 (Henry
et al., 2004).

Spray drift of glyphosate after foliar applications could have
severe impact on crops if the drift dosage exceeds the target toler-
ance. Glyphosate inhibits 5-enolpyruvylshikimate-3-phosphate

(EPSP) synthase in the shikimate pathway resulting in depletion
of aromatic amino acids essential for plant growth (Amrhein
et al., 1980). Besides growth reduction, glyphosate injury may
cause chlorosis at the newest growing points, necrosis throughout
the plant within 1–2 weeks after application, yield reduction, or
complete destruction of a susceptible crop (Henry et al., 2004).

Crops often affected by off-target drift of glyphosate including
corn (Buehring et al., 2007; Brown et al., 2009), soybean (Bellaloui
et al., 2006), and rice (Ellis et al., 2003) have been targets for sev-
eral injury identification methods. Rowland (2000) found that
stand height was the best parameter to identify the degree of gly-
phosate injury in corn. Remote sensing data and derived vegetation
indices (VIs), which are mathematical transformations of spectral
reflectance commonly used to indirectly assess differences in
growth and chlorophyll content of several crops, disease severity,
and nutrient and water deficiency have been also used to deter-
mine injury caused by herbicide drift. Comparing herbicide injury
of soybean and corn, Henry et al. (2004) distinguished healthy
and injured plants using hyperspectral data and several VIs. Thelen
et al. (2004) found significant differences among herbicides and
herbicide rates by calculating the Normalized Difference
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Vegetation Index (NDVI) from digital aerial images of soybean.
Tamhankar et al. (2002) investigated the effect of glyphosate
(Roundup) and N,N0-dimethyl-4,40-bipyridinium dichloride
(Paraquat) on the spectral reflectance of corn and soybean as a first
approach to develop an automated protocol for herbicide drift
detection.

A challenge for detecting herbicide injury by remote sensing is
to identify techniques to enhance detection of within-field spatial
variability for determination of the level of crop injury. Therefore,
in this study we adopted the use of VIs to verify the hypothesis that
VIs can be used as surrogate data to identify differences in crop in-
jury levels. To test this hypothesis, a canonical correlation analysis
(CCA) was used to identify VIs best correlating with field-measured
crop injury. CCA has been used extensively in soil and plant sci-
ences (Noe and Barker, 1985; Dieleman et al., 2000; Martin et al.,
2005). The CCA has the ability to analyze correlations between
two groups of variables by assessing the correlation between the
linear combinations of one group of variables with the linear com-
binations of the second group of variables (Gittins, 1985; Johnson
and Wichern, 2002).

Objectives of this research were to determine if vegetation indi-
ces derived from multispectral images acquired with an airborne
multispectral camera could identify crop injury by off-target drift
of glyphosate and to investigate how the vegetation index images
can be used for identification of crop injury levels.

2. Materials and methods

2.1. Study field and experimental plan

Crop injury and biological responses of three row crops (cotton,
corn, and soybean) following glyphosate drift from an aerial appli-

cation were evaluated in an experiment conducted during summer
2009 (Huang et al, 2010). The study field was located at the
research farms of the US Department of Agriculture-Agricultural
Research Service in Stoneville, Mississippi (33�260 N, 90�550 W).
Cotton (non-glyphosate resistant (GR) cotton cultivar ‘FM955LL’-
100,000 seed ha�1), corn (non-GR corn hybrid ‘Pioneer 31P41’-
75,000 seed ha�1), and soybean (non-GR soybean cultivar
‘SO80120LL’-285,000 seed ha�1) were planted on July 23, 2009 in
four replications of 8-row by 80 m plots; each one spaced
102 cm (Fig. 1).

A single aerial application of glyphosate was made on August
12, 2009 when cotton was at two- to three-leaf stage, corn was
at four-leaf stage, and soybean was at two- to three-trifoliolate
leaf stage. The glyphosate was applied using an Air Tractor
402B airplane equipped with 54 CP-09 spray nozzles (CP Prod-
ucts, Tempe, Arizona) set to a 5� deflection angle. This is a stan-
dard setting but one that is slightly more prone to enhance the
potential for off-target drift (Thomson, 2008). The aircraft and
application system were adjusted to deliver the liquid at the
rate of 46.8 L ha�1. Spray release height was set at 3.7 m and
ground speed was set to 225 km h�1 over an 18.3 m wide spray
swath. The sprayed liquid was a glyphosate solution of Round-
up Weathermax� (Monsanto Co., St. Louis, Missouri) applied at
a rate of 866 g of active ingredient (a.i.) ha�1. The airplane trav-
elled in a west-to-east direction across the center of the study
field perpendicular to the crop rows over a marked swath line
(Fig. 1). On-site weather conditions were recorded during the
4 s flight. The average wind speed was 11.2 km h�1 from the
northeast direction at an average of 64� from the North. Aver-
age air temperature was 28.5 �C and relative humidity was
72% as acquired during the spray run using a tripod mounted
Kestrel 4500 weather tracker (Nielsen-Kellerman, Boothwyn,
PA).

Fig. 1. Experimental layout for the spray test (On the false color composition of image collected 21 DAA, the dots denote plant sampling locations for cotton, corn, and
soybean).
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2.2. Biomass measurements

Plant sampling locations by crop and replication were estab-
lished downwind at 0, 12, 15, 20, 25, 35, and 45 m from the center
of the spray swath (18.3 m size) (Fig. 1). One upwind sample loca-
tion at 35 m from the north edge of the 18.3 m spray swath was in-
cluded as a control (crops not exposed to glyphosate) of crops’
biological responses to drift (Fig. 1).

Data of percentage plant injury, plant height, chlorophyll con-
tent, and shoot dry weight were collected from all eight rows in
a 0.5-m-wide band centered over the sampling location except at
0 m. For the 0 m downwind sampling location, data were collected
from an area of eight rows by the 18.3 m spray swath. The sam-
pling location at 0 m downwind represented the highest exposure
to glyphosate, while the 35 m upwind sampling location repre-
sented no glyphosate exposure. Visual injury ratings were based
on chlorosis, necrosis, stunted growth, and plant death and the rat-
ing scale was assigned on a scale of 0–100, with 100 representing
total plant mortality and 0 representing no injury. Plant height val-
ues were determined from the average of five plants randomly se-
lected within the sampling area at each location. Chlorophyll
content was determined from three of the youngest fully expanded
leaves from three randomly selected plants. Chlorophyll was ex-
tracted with 10 mL dimethyl sulfoxide and quantified spectropho-
tometrically (Hiscox and Israelstam, 1979). Shoot dry weight was
calculated from ten plants selected from the sampling area, which
were oven dried (60 �C, 72 h).

2.3. Aerial multispectral imaging and vegetation indices

Multispectral images were collected from the Air Tractor 402B
airplane using a MS 4100 camera (Geospatial Systems, Inc., West
Henrietta, New York). This multi-spectral camera uses three CCD
(Charge Coupled Device) sensors, to acquire images in 3–5 spectral
bands within the 400–1100 nm range of the electromagnetic spec-
trum and provides a digital imaging resolution of 1920 (horizon-
tal) � 1080 (vertical) pixel array per sensor and 60� field of view
when fitted with 14 mm, f/2.8 lens. The camera provides compos-
ite color images and individual color plane images that approxi-
mate Landsat Satellite Thematic Mapper bands (NASA,
Washington, DC; USGS, Reston, Va.). The MS 4100 camera config-
ures the digital output of image data with CameraLink standard
or parallel digital data in either EIA-644 or RS-422 differential
format. The camera works with the NI IMAQ PCI-1424/1428
frame-grabber (National Instruments, Austin, Texas). With the
DTControl-FG (Geospatial Systems, Inc) software and the Camera-
Link configuration, the camera system acquires images from the
frame-grabber directly from within the DTControl program. For

this experiment, the camera was configured to acquire color infra-
red (CIR) images by using 3-bands: green (500 nm with 40 nm
bandwidth), red (670 nm with 40 nm bandwidth), and near infra-
red (NIR) (800 nm with 60 nm bandwidth).

Multispectral images with a spatial resolution of 11 � 20 cm
pixel size were collected 1, 7, 14, and 21 days after the glyphosate
application (DAA). They were geo-corrected using data from USDA
NAIP (National Agriculture Imagery Program) imagery, which are
ortho-rectified, true color, 1 m resolution products. For this study,
only results from the images collected 7DAA and 21DAA are pre-
sented because those should represent the lowest and highest ex-
tent of injury expected from the set of four images. The 1DAA
image was not selected for this study mainly because: (1) biologi-
cal and spectral changes in the crop are not always evident imme-
diately after drift deposition of glyphosate, (2) spectral reflectance
from the canopy might be confounded with reflectance from the
soil making reliable discrimination of crop damage difficult, and
(3) glyphosate injury is not visible within 1DAA.

Seven vegetation indices (VIs) were calculated from the digital
values (DNs, 0–255) of the multispectral aerial images (Table 1).
The transformation of image-based spectral reflectance into VIs is
usually used to enhance features on an image and minimize differ-
ences in spectral response associated with shadow, atmosphere,
canopy background, surface roughness, changes on illumination
and soil background (Sullivan et al., 2004). For example, the Nor-
malized Difference Vegetation Index (NDVI) is commonly used to
assess chlorophyll and biomass vegetation differences. This index
is based on the principle that healthy plants with high chlorophyll
content absorb red light and reflect energy in the near infrared
(NIR) which results in high NDVI values (Rouse et al. 1973; Tucker
1979). Conversely, as chlorophyll declines so does the plant health
and the plant’s ability to absorb red light and reflect NIR resulting
in low NDVI values. The disadvantage of NDVI is that it saturates in
a dense and multi-layered canopy and it does not show a linear
correlation with leaf area index (LAI) (Baret and Guyot, 1991).
The indices GVI, GNDVI, CVI, and MSR relate to leaf chlorophyll
changes (Bronson et al., 2003; Vincini et al. 2008; Haboudane
et al., 2004). RVI, and IPVI have exhibited good correlation with
cotton biomass (Bronson et al., 2003), corn biomass and drought
stress (Bahrun et al., 2003), soybean plant height (Batista and
Rudorff, 1990), and grass biomass (Payero et al., 2004). Based on
diverse uses of VIs and their responsiveness, seven VIs were inves-
tigated to determine the best relationship with field-measured
glyphosate injury and to use them to determine the level of
glyphosate injury.

2.4. Data processing and statistical analysis

2.4.1. Standaridzed semivariograms of vegetation index images
Subsets of the 7DAA and 21DAA images corresponding to each

crop and replication were extracted and analyzed individually (4
individual images per crop – 12 images total). Data from each veg-
etation index (VI) image were rescaled to unit variance by dividing
each pixel value by the VI image standard deviation (e.g., NDVI
pixeli(column)j(row)/NDVI standard deviation). This procedure ensured
that computations of experimental semivariograms calculated
from each vegetation index/crop/replication were standardized to
unit sill (Van Meirvenne and Goovaerts, 2002; Kerry and Oliver,
2008). The semivariogram, core of geostatistical analyses, has been
used to describe spatial patterns in terms of the dissimilarity of
observations as a function of the separation distance (Goovaerts,
1998) which include the spatial dependence in remotely sensed
images (Atkinson and Lewis, 2000; Goodin and Henebry,1998).

Following exploratory data analyses, a total of 24 (3 crops � 4
replications � 2 dates) omnidirectional semivariograms per VI
were computed for 80 lags with 0.56 m lag distance using the usual

Table 1
Vegetation indices evaluated for assessment of glyphosate injury on cotton, corn, and
soybean.

Vegetation Index (VI) Formula Reference

Normalized Difference
Vegetation Index (NDVI)

(NIR � Red)/
(NIR + Red)

Rouse et al. (1973),
Tucker (1979)

Green Normalized Difference
Vegetation (GNDVI)

(NIR � Green)/
(NIR + Green)

Gitelson et al.
(1996)

Simple Ratio Index (RVI) NIR/Red Jordan (1969)
Green Vegetation Index (GVI) NIR/Green Bausch and Duke

(1996)
Chlorophyll Vegetation
Index (CVI)

(NIR/Green)�
(Red/Green)

Vincini et al.
(2008)

Modified Simple Ratio (MSR) (NIR/Red � 1)/
((NIR/Red) + 1)1/2

Chen (1996)

Infrared Percentage Vegetation
Index (IPVI)

NIR/(NIR + Red) Crippen (1990)
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computing equation (Webster and Oliver, 2001). The best semi-
variogram model for each variable was chosen based on the mini-
mum residual sum of squares for the fit (Isaacs and Srivastava,
1989). Ordinary punctual kriging was used to estimate the VI val-
ues at each plant sampling location (Kerry and Oliver, 2003) using
TerraSeer STIS software (Avruskin et al. 2004).

2.4.2. Canonical correlation analysis
Canonical correlation analysis (CCA) by crop and image collec-

tion date were conducted to identify the VIs strongly related to
the field-measured glyphosate injury. CCA assesses the relation-
ship between two sets of variables: Y variables (field-measured
plant injury variables) and X variables (vegetation indices).
Through this method it is possible to create a small number of
new variables (pairs), where each component of the canonical var-
iable pair, with the highest possible between-set correlations, is
generated from the linear combination of the variables within each
group of the original variables (Martin et al, 2005). The level of sig-
nificance of the canonical correlation was assessed through the
Wilkes-Lambda statistic. If P < 0.05, the pair of canonical variables
was significantly associated by canonical correlation. The loadings,
or correlations in the CCA, indicate the simple linear relationship
between the original variables and the canonical variate. Variables
having a high contribution to the canonical variate are those that
exhibit large loadings to evaluate multivariate dependencies. Be-
cause one objective of this study is to identify VIs surrogate for
crops glyphosate injury, an interset structure correlation (a mea-
sure of strength between the canonical variates of a measurement
domain and the observed variables of the other domain), was con-
sidered. In this study, Vd was designated to represent a set of inde-
pendent field-measured plant injury variables, and Vi was assigned
to represent a set of dependent VIs.

2.4.3. Identification of the injury level
The results from the CCA indicated the vegetation indices best

correlated with field-measured plant injury variables; then, those
indices were used to identify the level of injury. For each index
and crop/replication, residuals (res) values were obtained by calcu-
lating every VI image pixel value subtracted from pixel values of
the upwind control area (average values within a circular area of
2.5 m radius from the upwind control sampling location). Fre-
quency distribution histograms of residuals values were calculated
to assess the level of injury between crops. Differences in percent-
age of pixels (positive or negative) within each frequency interval

for each crop and image collection time were used to assess the
progression of damage. A similar approach was implemented by
Thelen et al. (2004) to distinguish herbicide rate effect on soybean.
They calculated DNDVI, the difference between untreated and
treated plots within an experimental block to detect treatment dif-
ferences. Casadesús et al. (2007) used pixel values histograms to
estimate areas associated with a specific feature on an image. They
calculated the relative green area of digital images as the sum of
frequencies of the histogram classes included in the Hue (Hue
component from the color space intensity hue saturation) range
from yellow (60�) to bluish green color (180�).

Analyses of variance, ANOVA, was conducted to evaluate pixel
number differences by crop per each frequency interval and
positive/negative frequency intervals by crop. Mean separation
between variables was obtained by Tukey’s and Waller-Duncan
K-ratio significant difference tests (P < 0.05). A correlation analysis
was conducted with data from sampling observations categorized
by frequency interval of VIs images and field-measured injury vari-
ables. This analysis verified the strength of association between
residual values and field-measured plant injury values.

3. Results and discussion

3.1. Canonical correlation analysis

For each crop, the CCA between the field-measured plant injury
data and VIs calculated from the 7DAA and 21DAA images, resulted
in two significant pairs (P < 0.05, Wilks’ Lambda) of canonical vari-
ates (Table 2). At 7DAA, the canonical correlations between the
first pair of canonical variates were 0.68, 0.84, and 0.89 for cotton,
corn and soybean, respectively. Those between the second pair of
canonical variates were 0.61–0.85 for the same crops, which sug-
gest that glyphosate injury in crops could be assessed by VIs de-
rived from multispectral aerial images. The data also showed that
the standardized cumulative variance (SCV) was explained by their
canonical variates; however, this varied by crop. The two signifi-
cant canonical damage variates (Vd) explained 76%, 93%, and 83%
of the total variance in field-measured plant injury data for cotton,
corn, and soybean, respectively (Table 2). The canonical remote in-
dex variates (Vi) explained 36%, 75%, and 57% of the total variance
in VIs for cotton, corn, and soybean, respectively.

At 21DAA, the SCV also varied by canonical variate and crop.
The two significant canonical variates Vd explained 72%, 90%, and

Table 2
Canonical correlations, standardized cumulative variance and the canonical variates Vd and Vi generated through the CCA for Cotton, Corn and Soybean.

Sampling Date Canonical variate Cotton Corn Soybean

CCa Pr > F CCa Pr > F CCa Pr > F

7DAA 1 0.678 0.0253 0.840 <0.0001 0.896 <0.0001
2 0.611 0.0682 0.743 0.0091 0.846 <0.0001
3 0.522 NS 0.466 NS 0.689 NS
Wilks’ Lambda 0.0253 <0.0001 <0.0001
SCVd

b 76 93 83
SCVi

b 36 75 57

21DAA 1 0.892 0.0018 0.863 0.0002 0.908 <0.0001
2 0.538 NS 0.702 0.0593 0.720 NS
3 0.429 NS 0.576 NS 0.445 NS
4 0.283 NS 0.228 NS 0.207 NS
Wilks’ Lambda 0.0018 0.0002 <0.0001
SCVd

b 72 90 93
SCVi

b 52 68 67

Vd = set of independent field-measured plant injury variables.
Vi = set of dependent VIs.

a Canonical correlation.
b Standardized cumulative variance of the first two canonical variates (P < 0.0001).
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93% of the total variance in field-measured plant injury variables
for cotton, corn, and soybean, respectively. The total variance of
the VIs explained by the canonical variate Vi was lower than the
canonical variate Vd. The canonical variate Vi explained 52%, 68%,
and 67% of the total variance of the VIs for cotton, corn, and soy-
bean, respectively. The canonical correlations between the first
pair of canonical variables were 0.89, 0.86, and 0.91 for cotton,
corn, and soybean, respectively, and those between the second pair
of canonical variables were 0.54–0.72 for the same crops. These
values were similar to the ones obtained with the data collected
7DAA, except for cotton. These similar correlations also confirmed
the relationship between field measured canopy variables and the
VIs used as surrogate for crop injury.

3.2. Relationships between canonical variates and field-measured
injury/VI

The highest correlation between canonical variates and the ori-
ginal variables, field-measured plant injury and VIs, was observed
for the first pair of canonical variates (Table 2). Therefore, discus-
sion of the results herein is focused on the intraset structure corre-
lation coefficients, strength of the association between the original

variable and the canonical variates, for the first pair of canonical
variates. These correlation coefficients illustrate which original
variables contribute most heavily to a canonical variate and the
direction of the effect (Martin et al. 2005; Gittins, 1985). At
7DAA, the canonical variate Vd1 accounted for 24%, 52%, and 44%
of the total variance of the field-measured plant injury variables
for cotton, corn, and soybean, respectively (Table 3). Although
there were considerable correlation differences between the
field-measured plant injury variables and the canonical variate
Vd1, percentage injury and dry matter exhibited the strongest cor-
relations for all studied crops. The highest correlation was ob-
served between Vd1 and injury (r = 0.93) for cotton; dry matter
(r = �0.96) and injury (r = 0.79) for corn; injury (r = 0.99) and dry
matter (r = �0.73) for soybean. The interset correlation indicated
that the strongest relationship between the canonical variate Vd1

and the different VIs was observed for CVI and GVI; however, the
degree of correlation varied by crop. For cotton, CVI (r = 0.57),
GVI (r = 0.52), and GNDVI (r = 0.48) showed the best correlations
with Vd1. The degree of correlation between CVI and Vd1 increased
to r = 0.79 for corn and r = 0.78 for soybean.

At 21DAA, the total variance percentage of the field-measured
plant injury variables explained by the canonical variate Vd1

Table 3
Canonical correlations between the original variables and the canonical variate Vdi generated through the CCA. Data collected seven days after the glyphosate application (7DAA).

Variable Cotton Corn Soybean

Correlation between the field-measured plant injury variables and the damage canonical variates
Vd1 Vd2 Vd1 Vd2 Vd1 Vd2

Injury 0.93 �0.36 0.79 �0.59 0.99 �0.15
Chlorophyll �0.30 0.91 �0.73 0.55 �0.51 0.54
Dry matter �0.03 0.63 �0.96 0.27 �0.73 0.64
SCVa 0.24 0.34 0.52 0.18 0.44 0.18

Correlation between the vegetation indices and the damage canonical variatesb

NDVI �0.31 0.10 �0.10 0.58 �0.48 0.25
GNDVI 0.48 0.14 0.72 0.21 0.76 0.23
RVI 0.02 0.17 0.07 0.59 �0.33 0.37
GVI 0.52 0.10 0.79 0.11 0.79 0.02
CVI 0.57 0.05 0.79 �0.14 0.78 �0.17
MSR �0.29 0.13 �0.19 0.60 �0.55 0.18
IPVI 0.18 0.14 0.40 0.46 0.13 0.55
SCVa 0.15 0.02 0.29 0.19 0.35 0.09

For each Vdi, the highest correlation coefficient(s) is shown in bold format.
a Standardized cumulative variance.
b Interset structure correlation.

Table 4
nonical correlations between the original variables and the canonical variate Vdi generated through the CCA. Data collected twenty one days after the glyphosate application
(21DAA).

Variable Cotton Corn Soybean

Correlation between the field-measured plant injury variables and the damage canonical variates
Vd1 Vd2 Vd1 Vd2 Vd1 Vd2

Injury 0.90 �0.16 0.86 �0.27 0.97 0.12
Chlorophyll �0.22 0.20 �0.94 0.28 �0.89 �0.28
Dry matter �0.97 0.07 �0.93 0.04 �0.97 �0.01
Plant height �0.85 0.52 �0.96 �0.16 �0.98 0.01
SCVa 0.63 0.09 0.85 0.04 0.91 0.02

Correlation between the vegetation indices and the damage canonical variatesb

NDVI �0.47 0.31 �0.44 0.33 �0.72 0.04
GNDVI 0.64 0.01 0.71 0.21 0.77 �0.25
RVI �0.38 0.30 �0.38 0.39 �0.79 0.08
GVI 0.76 �0.07 0.82 0.10 0.71 �0.11
CVI 0.77 �0.12 0.86 �0.03 0.85 �0.02
MSR �0.26 �0.25 �0.54 0.32 �0.80 0.12
IPVI 0.07 0.23 0.01 0.48 �0.28 �0.19
SCVa 0.29 0.05 0.37 0.09 0.52 0.02

For each Vdi, the highest correlation coefficient(s) is shown in bold format.
a Standardized cumulative variance.
b Interset structure correlation.
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increased with respect to the analyses with the 7DAA data. The
canonical variate Vd1 accounted for 63%, 85%, and 91% of the total
variance for cotton, corn, and soybean, respectively (Table 4). At
this time of the growing season, most of the field-measured plant
injury variables exhibited strong correlation with the canonical
variate Vd1. For cotton, Vd1 was an expression of dry matter
(r = �0.97) and injury (r = 0.90). In a similar way, Vd1 was an
expression of plant height (r = �0.96) and chlorophyll (r = �0.94)
for corn and plant height (r = �0.98) and injury (r = �0.94) for soy-
bean. These strong correlations and high percentage of the total
variance accounted for by the canonical variates Vdi indicated that
the VIs having strong correlation with Vdi, especially Vd1, could be
considered as surrogate for glyphosate plant injury.

Considerable differences existed in the strength of correlation of
the VIs with the canonical variate Vd1; however, CVI, GVI, and
GNDVI continued to exhibit the strongest correlation. CVI showed
the strongest correlation for cotton (r = 0.77), corn (r = 0.86), and
soybean (r = 0.85) from the set of VIs evaluated (Table 4). In con-
trast, IPVI exhibited the weakest correlation, 0.07, 0.01, and
�0.28 for cotton, corn, and soybean, respectively. The strong corre-
lation between CVI, GVI, and GNDVI and field-measured injury
variables might be explained by the strong correlation of these
indices with chlorophyll or leaf N content (Bronson et al., 2003;

Vincini et al. 2008; Haboudane et al., 2004). The impact of glyphos-
ate on crops has been documented as a reduction in chlorophyll
content (Reddy et al., 2000; Zobiole et al., 2010), decrease in pho-
tosynthetic parameters like photosynthetic rate, transpiration and

Table 5
Correlation of chlorophyll content and percentage plant injury data with frequency
intervals (injury classes) from CVIres images.

Replication Crop r

7 DAA 21 DAA

Chlorophyll Injury Chlorophyll Injury

1 Cotton �0.21 0.60 �0.76 0.95
Corn �0.66 0.91 �0.86 0.74
Soybean �0.96 0.84 �0.92 0.94

2 Cotton �0.29 0.45 �0.71 0.65
Corn �0.56 0.75 �0.77 0.61
Soybean �0.53 0.52 �0.88 0.82

3 Cotton 0.32 �0.58 �0.75 0.64
Corn �0.77 0.72 �0.86 0.89
Soybean �0.30 0.90 �0.80 0.87

4 Cotton 0.28 0.34 �0.14 0.33
Corn �0.34 0.42 �0.62 0.63
Soybean �0.97 0.57 �0.45 0.55

Fig. 2. CVI images over the experimental field. (a) CVI image collected 7DAA and (b) CVI image collected 21DAA. Dark blue on the images denote low biomass.
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stomatal conductance (Zobiole et al., 2010), nitrate reductase activ-
ity (Bellaloui et al., 2008), decrease in nodule biomass, nitrogen fix-
ation and accumulation (Reddy et al., 2000). These findings are
evidence of glyphosate impact on chlorophyll, which was indi-
rectly observed through the correlation of the field-measured plant
injury variables by indices CVI, GVI, and GNDVI.

Although CVI, GVI, and GNDVI had similar weight in the CCA,
the consistently strong correlation of CVI with the canonical vari-
ate Vd1 is nonetheless as important as the enhanced sensitivity to
leaf chlorophyll concentration and the reduced effect of LAI varia-
tion compared to the other two indices (Vincini et al., 2008). This
feature is even more important when comparing changes in spec-
tral reflectance from crops like cotton, corn, and soybean that have
different canopy structure and LAI through the progression of
growth stages.

3.3. Identification of injury magnitude

Based on the results from the CCA, CVI was selected as the veg-
etation index to assess the level of glyphosate injury to cotton,
corn, and soybean. Unlike Vincini et al. (2008) who reported a po-
sitive relationship between CVI and chlorophyll content indepen-
dently of a LAI value, a negative correlation was found for all the
crops evaluated in this study at all the sampling dates (Table 5).
On the CVI images, non-injured areas (upwind section from the
study plots) exhibited lower CVI values than the injured areas
(downwind) (Fig. 2).

Instead of using the raw CVI images values, CVI residual images
(CVIres) calculated by subtracting each CVI image pixel value from
the average pixel value of the upwind control area (non-injured
plants) were used to enhance and detect differences between the

Fig. 3. CVIres images over the experimental field. (a) CVIres image collected 7DAA and (b) CVIres image collected 21DAA. Dark blue areas on the images denote crop injury by
glyphosate.
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injured and non-injured areas within the experimental plots and
between crops (Fig. 3). Frequency distribution histograms of CVIres

image pixel values allowed assessment of glyphosate injury to each
crop. Three-bin histograms were created, one frequency interval
was comprised by negative pixel values and the other two intervals
included only positive pixel values. The break between the two po-
sitive class intervals was chosen based on the CVIres average value
– 7DAA and 21 DAA images – of all sampling locations along the
flight line/middle of spray swath (Fig. 1), which represented the
highest exposure to glyphosate from which a severe injury was ex-
pected. Table 6 illustrates the percentage of pixels in the three fre-
quency intervals or bins calculated from the CVIres images for the
cotton, corn, and soybean crops. Positive CVIres values on an image,
class 2 and 3, indicate areas where either the growth or chlorophyll
content of plants is less than the non-injured areas (control loca-
tions); therefore, differences in the percentage of positive residuals
between the crops might indicate a distinct degree of injury. The-
len et al. (2004) observed a decrease in NDVI values from digital
aerial imagery with increasing herbicide (lactofen) rates on soy-
bean. Following a similar approach, for this study a higher percent-
age of positive CVIres values on the image respect to negative values
might suggest large zones of glyphosate injury.

At 7DAA, significant differences between crops with respect to
the percentage of pixels in the frequency interval three, P3.11,
were observed (P = 0.0023). A higher percentage of positive values,
describing severe injury in this frequency interval, was observed
for soybean and corn respect to cotton (Table 6). If frequency inter-
val two classifies areas as moderate injury, then moderate injury
was higher in corn and soybean than cotton. Overall, a higher per-
centage of negative pixel values (55% for frequency interval one)
with respect to positive pixel values (46% for frequency interval
two and three) was observed for cotton. In contrast, corn
(P = 0.025) and soybean (P = 0.0004) showed a significantly higher
percentage of positive pixel values than negative pixel values. This
higher percentage of positive pixel values suggested that early in
the season, soybean and corn exhibited more symptoms of injury
than cotton.

At 21DAA, the percentage of positive values in the frequency
interval three increased with respect to the 7DAA image indicating

an increase in the injury level for all crops. As well as the interval
three calculated from the 7DAA image, differences between crops
with respect to the percentage of pixels was observed with corn
exhibiting higher injury (37% positive pixels) than cotton or soy-
bean (Table 6). Frequency interval two, moderate injury, showed
a higher percentage of positive pixels for cotton than corn and soy-
bean. Different from the 7DAA image, an increase in the percentage
of positive pixels was observed at 21DAA for cotton and corn (from
16% to 48% increase in positive pixel values), which suggested an
increase in injury extent.

A correlation analysis with data from sampling observations
categorized by frequency interval of CVIres images and percentage
plant injury, field-measured injury variable with one of the highest
loadings in the canonical correlation analysis, validated the
hypothesis that positive CVIres values in the images, frequency
intervals two and three, indicated plant injury. Table 5 shows the
correlation analysis for the data at 7DAA and 21DAA. The correla-
tion differed among crops and replications, and between image
collection dates. This might be due to different crop susceptibility
to glyphosate, wind direction, growth stage at the moment of the
glyphosate application and effects throughout the season. Despite
these differences, the higher correlation between percentage injury
data and the 21DAA-CVIres image classified by three frequency
intervals confirmed that higher percentage of positive pixels on
the image corresponded to large areas or zones of crop injury from
glyphosate.

The overall results showed that CVIres derived from the CVI
images were effective in separating injury levels between crops;
however differences were observed between the 7DAA and
21DAA CVIres images. This result is consistent with findings by
Henry et al. (2004), who reported that at 4DAA and 7DAA only
77% classification accuracy was achieved from multiple vegetation
index images used to distinguish injury on soybean and corn crops
by two rates of glyphosate. The success in using CVIres images to as-
sess the level of glyphosate injury agreed with previous studies
that used remote sensing imagery coupled with geospatial tech-
nologies to identify injury from herbicide drift. Thelen et al.
(2004) distinguished herbicide rate effect on soybean using digital
aerial imagery NDVI values. By calculating DNDVI, the difference

Table 6
Percentage of pixels for three frequency distribution intervals calculated from the CVIres images.

7DDA 21DDA
Replication Crop % of pixels by frequency interval from CVIres images

1 2 3 1 2 3
<0.00 (0.00–3.11) > = 3.11 <0.00 (0.00–3.11) > = 3.11

1 Cotton 52 45 3 36 36 27
Corn 49 33 18 43 24 33
Soybean 43 31 25 43 24 33

2 Cotton 37 57 6 35 46 19
Corn 32 53 15 20 42 38
Soybean 29 48 23 19 43 38

3 Cotton 77 23 0 24 46 31
Corn 42 57 1 22 38 39
Soybean 32 53 15 32 37 31

4 Cotton 50 50 0 32 33 34
Corn 46 44 10 38 25 37
Soybean 35 44 21 46 27 27

Average by cropa Cotton 54a 44a 2c 32a 40a 28b
Corn 42ab 47a 11b 31a 32a 37a
Soybean 35b 44a 21a 35a 33a 32ab

Average by frequency intervalb Cotton 55a 46a 32a 68b
Corn 44a 58b 31a 69b
Soybean 35a 65b 35a 65b

Means followed by the same letter are not significantly different at P 6 0.05.
a Means compared by crop per each frequency interval according to Waller-Duncan K-ratio t-test.
b Mean compared by frequency interval per crop according to Tukey’s test.
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between untreated and treated plots within an experimental block,
they improved the ability to detect treatment differences over the
average NDVI value for each treatment.

4. Conclusions

The results from the canonical correlation analysis showed that
VIs derived from multispectral images were correlated with field-
measured plant injury. The strong correlation between the first
damage canonical variate and the field-measured plant injury vari-
ables and the high percentage of the total variance accounted by
the damage canonical variates indicated that VIs having strong cor-
relation with damage canonical variates, especially with the first
damage canonical variate, could be considered as surrogate for gly-
phosate plant injury. From the VIs considered, CVI, GVI, and GNDVI
indices and especially CVI, explained most of the variability in
field-measured plant injury to cotton, corn, and soybean. This pro-
vided evidence of the potential for remote assessment of plant in-
jury by application of glyphosate. The comparison of frequency
distribution of the CVIres derived from the CVI images, was an effec-
tive method to separate injury levels between crops. The higher
percentage of positive pixels on the CVIres images corresponded
to large areas or zones of glyphosate injury. The data showed that
the corn crop exhibited higher injury than cotton and soybean.
These results provide evidence of the potential of remote sensing
images collected from a low-altitude aerial platform, to indirectly
assess the effects of glyphosate drift from aerial application to cot-
ton, corn, and soybean. Future research will explore the use of indi-
cator variogram to characterize the size of clusters of injured
plants.

Disclaimer

Mention of a trade name, proprietary product, or specific equip-
ment does not constitute a guarantee or warranty by Auburn Uni-
versity or the US Department of Agriculture and does not imply
approval of the product to the exclusion of others that may be
available.
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